Materials made of synthetic vitreous mineral fibers, such as stone wool, are widely used in construction, in functional composites and as thermal and acoustic insulation. Chemical stability is an important parameter in assessing long term durability of the products. Stability is determined by fiber resistivity to dissolution, where the controlling parameters are solid surface area to solution volume ratio (S/V), pH and composition of the fibers and organic compounds used as binders.
View Article and Find Full Text PDFThe production of novel composite materials, assembled using biomimetic polymers known as peptoids (N-substituted glycines) to nucleate CaCO, can open new pathways for advanced material design. However, a better understanding of the heterogeneous CaCO nucleation process is a necessary first step. We determined the thermodynamic and kinetic parameters for calcite nucleation on self-assembled monolayers (SAMs) of nanosheet-forming peptoid polymers and simpler, alkanethiol analogues.
View Article and Find Full Text PDFWe have developed a method for predicting the solvation contribution to solid-liquid interfacial tension (IFT) based on density functional theory and the implicit solvent model COSMO-RS. Our method can be used to predict wetting behavior for a solid surface in contact with two liquids. We benchmarked our method against measurements of contact angle from water-in-oil on silica wafers and a range of self-assembled monolayers (SAMs) with different compositions, ranging from oil-wet to water-wet.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2020
The ability of bulk glass and fibers to react in aqueous solution, with organic polymers and coupling agents, depends on the surface charge, reactivity, and adsorption properties of the glass surface, i.e. the character and density of surface -OH groups, whereas glass and fiber chemical stability and biosolubility depend on the resistance to dissolution.
View Article and Find Full Text PDFMicrobial production of iron (oxyhydr)oxides on polysaccharide rich biopolymers occurs on such a vast scale that it impacts the global iron cycle and has been responsible for major biogeochemical events. Yet the physiochemical controls these biopolymers exert on iron (oxyhydr)oxide formation are poorly understood. Here we used dynamic force spectroscopy to directly probe binding between complex, model and natural microbial polysaccharides and common iron (oxyhydr)oxides.
View Article and Find Full Text PDF