Artificial resonant metamaterial with subwavelength localized filed is promising for advanced nonlinear photonic applications. In this article, we demonstrate enhanced nonlinear frequency-agile response and hysteresis tunability in a Fano-resonant hybrid metamaterial. A ceramic cuboid is electromagnetically coupled with metal cut-wire structure to excite the high-Q Fano-resonant mode in the dielectric/metal hybrid metamaterial.
View Article and Find Full Text PDFWe propose a novel design of a 3D chiral metasurface behaving as a spatial polarization converter with asymmetric transmission. The metasurface is made of a lattice of metallic one-and-a-half-pitch helical particles. The proposed metasurface exhibits a dual-band asymmetric transmission accompanied by the effect of complete polarization conversion.
View Article and Find Full Text PDFWe demonstrate a classical analog of electromagnetically induced transparency in a planar metamaterial. We show that pulses propagating through such metamaterials experience considerable delay. The thickness of the structure along the direction of wave propagation is much smaller than the wavelength, which allows successive stacking of multiple metamaterial slabs leading to increased transmission and bandwidth.
View Article and Find Full Text PDFWe demonstrate for the first time a nanostructured planar photonic metamaterial transmitting light differently in forward and backward directions.
View Article and Find Full Text PDFWe report that a resonance response with a very high quality factor can be achieved in a planar metamaterial by introducing symmetry breaking in the shape of its structural elements, which enables excitation of trapped modes, i.e., modes that are weakly coupled to free space.
View Article and Find Full Text PDF