Tuberculosis (TB), caused by the complex (MTBC), remains a pressing global health challenge, with the West African region, including The Gambia, experiencing a substantial burden. This study explores the genetic diversity of MTBC strains circulating in The Gambia for nearly two decades (2002-2021) to enhance understanding of drug resistance dynamics and inform targeted diagnostic and treatment strategies. Using whole-genome sequencing (WGS) data from 1,803 TB isolates, we identified the predominance of lineage 4 (L4, 67.
View Article and Find Full Text PDFBackground: Non-tuberculous mycobacteria (NTM) are a diverse group of environmental bacteria that are increasingly associated with human infections and difficult to treat. Plasmids, which might carry resistance and virulence factors, remain largely unexplored in NTM.
Methods: We used publicly available complete genome sequence data of 328 NTM isolates belonging to 125 species to study gene content, genomic diversity, and clusters of 196 annotated NTM plasmids.
Objectives: While the reported incidence of non-tuberculous mycobacterial (NTM) infections is increasing, the true prevalence remains uncertain due to limitations in diagnostics and surveillance. The emergence of rare and novel species underscores the need for characterization to improve surveillance, detection, and management.
Methods: We performed whole-genome sequencing (WGS) and/or targeted deep-sequencing using the Deeplex Myc-TB assay on all NTM isolates collected in Slovakia and the Czech Republic between the years 2019 to 2023 that were unidentifiable at the species level by the routine diagnostic line probe assays (LPA) GenoType CM/AS and NTM-DR.