Skin carcinoma, which includes basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma, is influenced by various factors such as genetic predisposition, chemical exposures, immune system imbalances, and ultraviolet (UV) radiation. This review delves into the mechanisms behind the development of these cancers, exploring the therapeutic potential of microbial, plant derived compounds and nanoparticles in advancing skin cancer treatments. Special attention is given to the cytotoxic effects of anti-neoplastic agents from microbial sources on different cancer cell lines, particularly melanoma.
View Article and Find Full Text PDFComput Biol Chem
November 2024
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade.
View Article and Find Full Text PDFThis study explores the critical role of inhibitors targeting the mammalian target of rapamycin (mTOR) signaling pathway in breast cancer research and treatment. The mTOR pathway, a central regulator of cellular processes, has been identified as a crucial factor in the development and progression of breast cancer. The essay explains the complex molecular mechanisms through which mTOR inhibitors, such as rapamycin and its analogs, exert their anticancer effects.
View Article and Find Full Text PDFThe clinical utility of raloxifene (RLX), a selective estrogen receptor modulator (SERM), has been compromised by severe side effects and unfavorable drug properties. To address these, a transferrin (Tf) conjugated graphene oxide nanoribbon (GONR) platform was tried for RLX. The stability of GONRs in biological media was improved by surface modification with 1, 2-Distearoyl-sn-glycero-3 phosphoethanolamine-Poly (ethylene glycol) (DSPE-PEG).
View Article and Find Full Text PDF