Cortical signals have been shown to track acoustic and linguistic properties of continuous speech. This phenomenon has been measured in both children and adults, reflecting speech understanding by adults as well as cognitive functions such as attention and prediction. Furthermore, atypical low-frequency cortical tracking of speech is found in children with phonological difficulties (developmental dyslexia).
View Article and Find Full Text PDFPurpose: The purpose of this study was to introduce SLOctolyzer: an open-source analysis toolkit for en face retinal vessels in infrared reflectance scanning laser ophthalmoscopy (SLO) images.
Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module uses deep learning methods to delineate retinal anatomy, and detects the fovea and optic disc, whereas the measurement module quantifies the complexity, density, tortuosity, and caliber of the segmented retinal vessels.
Introduction: We tested associations between two retinal measures (optic disc pallor, peripapillary retinal nerve fiber layer [pRNFL] thickness) and four magnetic resonance imaging markers of cerebral small vessel disease (SVD; lacunes, microbleeds, white matter hyperintensities, and enlarged perivascular spaces [ePVSs]).
Methods: We used PallorMetrics to quantify optic disc pallor from fundus photographs, and pRNFL thickness from optical coherence tomography scans. Linear and logistic regression assessed relationships between retinal measures and SVD markers.
Purpose: We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness.
Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants.