A central event in synapse development is formation of the presynaptic active zone in response to positional cues. Three active zone proteins, RIM, ELKS (also known as ERC or CAST) and Liprin-alpha, bind each other and are implicated in linking active zone formation to synaptic vesicle release. Loss of function in Caenorhabditis elegans syd-2 Liprin-alpha alters the size of presynaptic specializations and disrupts synaptic vesicle accumulation.
View Article and Find Full Text PDFActive zone proteins play a fundamental role in regulating neurotransmitter release and defining release sites. The functional roles of active zone components are beginning to be elucidated; however, the mechanisms of active zone protein localization are unknown. Studies have shown that glutamine, leucine, lysine, and serine-rich protein (ELKS), a recently defined member of the active zone complex, acts to localize the active zone protein Rab3a-interacting molecule (RIM) and regulates synaptic transmission in cultured neurons.
View Article and Find Full Text PDFGABA transporters control extracellular GABA levels by coupling transmitter uptake to the sodium and chloride cotransport. The rat brain GABA transporter GAT1 and other members of this family are regulated by direct interactions with syntaxin 1A, a protein involved in vesicle docking and in the regulation of several ion channels and transporters. We have shown previously that syntaxin 1A exerts its effects on GAT1 by decreasing the net uptake of GABA and its associated ions through interactions with aspartic acid residues in the N-terminal tail of GAT1.
View Article and Find Full Text PDFPlasma membrane neurotransmitter transporters affect synaptic signaling through transmitter sequestration. Transporters redistribute to and from the plasma membrane, suggesting a role for trafficking in regulating synaptic transmitter levels. One method for controlling transmitter levels would be to regulate transporter redistribution in parallel with transmitter release.
View Article and Find Full Text PDFPlasma membrane neurotransmitter transporters are regulators of extracellular transmitter levels in brain and are the primary sites of action for several drugs of abuse and therapy. Studies are beginning to reveal how neurons use synaptic machinery to modulate these regulators.
View Article and Find Full Text PDF