Publications by authors named "S L Catherine Jin"

Both type 1 and type 2 diabetes can lead to diabetic nephropathy (DN), a serious microvascular complication. Bromodomain 4 (BRD4), a member of the BET protein family, has been linked to various diseases, including cancer, inflammation, and fibrosis, and may be involved in the development of diabetes and its complications. In this study, we first explored the role and mechanism of BRD4 in DN.

View Article and Find Full Text PDF

Background: Tegoprazan (TPZ), a potassium-competitive acid blocker with potent gastric acid-suppressing activity, may be a potential agent for treating Helicobacter pylori infection. The study aimed to evaluate the efficacy of TPZ-based therapy for H. pylori eradication compared with proton pump inhibitor (PPI)-based therapy.

View Article and Find Full Text PDF

Although pancreatic cancer presents with one of the most unfavorable prognoses, its treatment options are very limited. Mitochondria-targeting moieties, considered a new and prominent treatment modality, are expected to demonstrate synergistic anticancer effects due to their distinct mechanism compared to conventional chemotherapeutic approaches. This study evaluated the therapeutic potential of mitochondria-accumulating self-assembly peptides, referred to as Mito-FFs, utilizing both in vitro and in vivo pancreatic cancer models.

View Article and Find Full Text PDF

Drought stress severely damages wheat growth and photosynthesis, and plants at the grain-filling stage are the most sensitive to drought throughout the entire period of development. Exogenous spraying of sodium nitroprusside (SNP) can alleviate the damage to wheat caused by drought stress, but the mechanism regulating the proline pathway remains unknown. Two wheat cultivars, drought-sensitive Zhoumai 18 and drought-tolerant Zhengmai 1860, were used as materials when the plants were cultivated to the grain-filling stage.

View Article and Find Full Text PDF

The aim of this study was to investigate the loss of docosahexaenoic acid (DHA) from three supplements (two powders and one oil) after digestion (rumen and gastrointestinal) and their effects on the number and composition of rumen bacteria, using an in vitro approach. The concentration of supplements has a significant impact on the DHA loss rate and algal oil exhibited the highest rate of loss, but bioaccessibility was not significantly different from the other supplements. 16S rRNA sequencing showed that three DHA supplements altered the bacterial composition of in vitro batch cultures inoculated with rumen microorganisms from cows, and caused changes in the relative abundance of important bacterial phyla, families, and genera.

View Article and Find Full Text PDF