Publications by authors named "S L Bishop-Hurley"

Novel species of fungi described in this study include those from various countries as follows: , on whitefly, on bark of , from soil under , on leaf spot of , and on leaf spot of . , on fully submersed siliceous schist in high-mountain streams, and on the lower part and apothecial discs of on a twig. , on decaying wood, from moist soil with leaf litter, on a trunk of a living unknown hardwood tree species, and on dead twigs of unidentified plant.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces new species of fungi discovered in various environments, including leaves, soil, and dead organic matter across different countries.
  • These fungi were identified based on their morphological features and DNA barcodes, confirming their uniqueness.
  • The findings are documented in the publication "Fungal Planet description sheets," highlighting the diversity and ecological roles of the newly described fungi.
View Article and Find Full Text PDF

Novel species of fungi described in this study include those from various countries as follows: , from , from soil. , as endophyte from healthy leaves of , in fruit of , from stem of , on stems of , from rhizosphere soil of , on living leaves of , , and on living leaves of sp. , from soil.

View Article and Find Full Text PDF

The aim of this work was to test the potential use of plant-derived extracts and compounds to control Campylobacter jejuni in broiler chickens. Over a 7-wk feeding period, birds were fed a commercial diet with or without plant extracts (Acacia decurrens, Eremophila glabra), essential oil [lemon myrtle oil (LMO)], plant secondary compounds [terpinene-4-ol and α-tops (including α-terpineol, cineole, and terpinene-4-ol)], and the antibiotic virginiamycin. Traditional culture and real-time quantitative PCR techniques were used to enumerate the numbers of C.

View Article and Find Full Text PDF

The aim of this study was to examine the antimicrobial potential of three essential oils (EOs: tea tree oil, lemon myrtle oil and Leptospermum oil), five terpenoid compounds (α-bisabolol, α-terpinene, cineole, nerolidol and terpinen-4-ol) and polyphenol against two strains of Campylobacter jejuni (ACM 3393 and the poultry isolate C338), Campylobacter coli and other Gram negative and Gram positive bacteria. Different formulations of neem oil (Azadirachta indica) with these compounds were also tested for synergistic interaction against all organisms. Antimicrobial activity was determined by the use of disc diffusion and broth dilution assays.

View Article and Find Full Text PDF