Herpes simplex virus induces the activation of the cellular DNA double strand break response pathway dependent upon initiation of viral DNA replication. The MRN complex, consisting of Mre11, Rad50 and Nbs1, is an essential component of the DNA double strand break response and other reports have documented its presence at sites of viral DNA replication, interaction with ICP8 and its contribution to efficient viral DNA replication. During our characterization of the DSB response following infection of normal human fibroblasts and telomerase-immortalized keratinocytes, we observed the loss of Mre11 protein at late times following infection.
View Article and Find Full Text PDFThe ability of herpes simplex virus type 1 (HSV-1) to activate NF-kappaB has been well documented. Beginning at 3 to 5 h postinfection, HSV-1 induces a robust and persistent nuclear translocation of an NF-kappaB-dependent (p50/p65 heterodimer) DNA binding activity, as measured by electrophoretic mobility shift assay. Activation requires virus binding and entry, as well as de novo infected-cell protein synthesis, and is accompanied by loss of both IkappaBalpha and IkappaBbeta.
View Article and Find Full Text PDFWe previously reported that herpes simplex virus type 1 (HSV-1) can activate the stress-activated protein kinases (SAPKs) p38 and JNK. In the present study, we undertook a comprehensive and comparative analysis of the requirements for viral protein synthesis in the activation of JNK and p38. Infection with the UL36 mutant tsB7 or with UV-irradiated virus indicated that both JNK and p38 activation required viral gene expression.
View Article and Find Full Text PDFInfection by herpes simplex virus type 1 (HSV-1) induces a persistent nuclear translocation of NFkappaB. To identify upstream effectors of NFkappaB and their effect on virus replication, we employed mouse embryo fibroblast (MEF)-derived cell lines with deletions of either IKK1 or IKK2, the catalytic subunits of the IkappaB kinase (IKK) complex. Infected MEFs were assayed for virus yield, loss of IkappaBalpha, nuclear translocation of p65, and NFkappaB DNA-binding activity.
View Article and Find Full Text PDFTo investigate the impact of stress kinase p38 activation on HSV-1 transcription, we performed a global transcript profile analysis of viral mRNA using an oligonucleotide-based DNA microarray. RNA was isolated from Vero cells infected with the KOS strain of HSV-1 in the presence or absence of SB203580, a pyridinyl imidazole inhibitor of p38. Under conditions that eliminated ATF2 activation but had no effect on c-Jun, and reduced virus yield by 85-90%, no effect on accumulation of viral IE, DE, or L transcripts was observed by array analysis or selected Northern blot analysis at 2, 4, and 6 h post infection.
View Article and Find Full Text PDF