Annu Int Conf IEEE Eng Med Biol Soc
July 2023
Stroke is a debilitating condition that leads to a loss of motor function, inability to perform daily life activities, and ultimately worsening quality of life. Robot-based rehabilitation is a more effective method than conventional rehabilitation but needs to accurately recognize the patient's intention so that the robot can assist the patient's voluntary motion. This study focuses on recognizing hand grasp motion intention using high-density electromyography (HD-EMG) in patients with chronic stroke.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
June 2023
In the robotics and rehabilitation engineering fields, surface electromyography (sEMG) signals have been widely studied to estimate muscle activation and utilized as control inputs for robotic devices because of their advantageous noninvasiveness. However, the stochastic property of sEMG results in a low signal-to-noise ratio (SNR) and impedes sEMG from being used as a stable and continuous control input for robotic devices. As a traditional method, time-average filters (e.
View Article and Find Full Text PDFThe nanoscale spatiotemporal resolution of single-particle tracking (SPT) renders it a powerful method for exploring single-molecule dynamics in living cells or tissues, despite the disadvantages of using traditional organic fluorescence probes, such as the weak fluorescent signal against the strong cellular autofluorescence background coupled with a fast-photobleaching rate. Quantum dots (QDs), which enable tracking targets in multiple colors, have been proposed as an alternative to traditional organic fluorescence dyes; however, they are not ideally suitable for applying SPT due to their hydrophobicity, cytotoxicity, and blinking problems. This study reports an improved SPT method using silica-coated QD-embedded silica nanoparticles (QD), which represent brighter fluorescence and are less toxic than single QDs.
View Article and Find Full Text PDFNeurotoxicology
September 2022
As the most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin is classified as a group 1 human carcinogen. We investigated the long-term effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on the progression of brain atrophy in humans. We retrospectively selected 546 patients exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (exposed group) and 1353 patients not exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (control group).
View Article and Find Full Text PDF