Self-assembled, highly anisotropic nanostructures are spontaneously formed in the molecular beam epitaxy of antimony triselenide on GaAs substrates. These one-dimensional (1D) nanostripes have all the orientations parallel to the substrate surface and preserve the epitaxial relationship with the substrate. The shape of the nanostripes is directly related to the highly anisotropic stibnite structure of antimony triselenide which consists of 1D ribbons held together by weak van der Waals forces.
View Article and Find Full Text PDFThe impact of wet treatment using an (NH)S-alcohol solution on the interface state of the p-GaN/Ni/Au/Pt contact system and laser diode processing was investigated. Sulfur wet cleaning resulted in reduced surface roughness and contact resistivity. The lowest specific contact resistance ( < 1 × 10 Ω·cm) was achieved with samples treated with an (NH)S-isopropanol solution, whereas the highest resistivity ( = 3.
View Article and Find Full Text PDFNewly discovered altermagnets are magnetic materials exhibiting both compensated magnetic order, similar to antiferromagnets, and simultaneous non-relativistic spin-splitting of the bands, akin to ferromagnets. This characteristic arises from specific symmetry operation that connects the spin sublattices. In this report, we show with calculations that semiconductive MnSe exhibits altermagnetic spin-splitting in the wurtzite phase as well as a critical temperature well above room temperature.
View Article and Find Full Text PDFWe investigate the full and half-shells of PbSnTe topological crystalline insulator deposited by molecular beam epitaxy on the sidewalls of wurtzite GaAs nanowires (NWs). Due to the distinct orientation of the IV-VI shell with respect to the III-V core the lattice mismatch between both materials along the nanowire axis is less than 4%. The PbSnTe solid solution is chosen due to the topological crystalline insulator properties above some critical concentrations of Sn (x ≥ 0.
View Article and Find Full Text PDF