Publications by authors named "S Kozhin"

Introduction: In 2014 and 2015 Professor of neurology Andrey Bryukhovetskiy published a novel theory of the information-commutation organization of the human brain in Russia, China and the USA. The theory posits the hypothesis that the higher nervous activity (cognitive, intellectual, mnestic) of the humans and their mind are material and have microwave electromagnetic nature. The theory perceives the human mind as a result of dynamic extracortical information-commutation relations of the super-positions of the electromagnetic waves of ultra high frequency emitted by different areas of the human brain in the inter-membrane cerebrospinal fluid space of the human head at a certain period of time.

View Article and Find Full Text PDF

The earlier identified gene RAD31 was mapped on the right arm of chromosome II in the region of gene MEC1 localization. Epistatic analysis demonstrated that the rad31 mutation is an allele of the MEC1 gene, which allows further designation of the rad31 mutation as mec1-212. Mutation mec1-212, similar to deletion alleles of this gene, causes sensitivity to hydroxyurea, disturbs the check-point function, and suppresses UV-induced mutagenesis.

View Article and Find Full Text PDF

In this work, we present the evidences of the involvement of Rdh54 in coordination of DNA repair by several pathways. Previously, we isolated rdh54-29 point mutation demonstrating unique properties different from the full deletion of RDH54 gene. Epistatic interaction between rdh54-29 and apn1delta mutations discloses the function of Rdh54p in the process of base excision repair.

View Article and Find Full Text PDF

Possible functions of previously described genes RAD29 and RAD31 involved in DNA repair were determined by analyzing the interaction between these genes and mutations in the genes of the three basic epistatic groups: RAD3 (nucleotide excision repair), RAD6 (error-prone mutagenic repair system), RAD52 (recombination repair pathway), and also the apn1 mutation that blocks the synthesis of major AP endonuclease (base excision repair). The results obtained in these studies and the estimation of the capability for excision repair of lesions induced by 8-metoxipsoralen and subsequent exposure to long-wavelength UV light in mutants for these genes led to the assumption that the RAD29 and RAD31 genes are involved in yeast DNA repair control.

View Article and Find Full Text PDF

Base excision repair (BER) and nucleotide excision repair (NER) are two main cellular responses to DNA damage induced by various physical and chemical factors. After exposure of the strain that carries the NER-blocking rad2 mutation to UV light, several mutants hypersensitive to the UV light lethal action and simultaneously sensitive to methylmethanesulphonate (MMS) were isolated. Two of these mutants (Uvs64 and Uvs212) were examined in detail.

View Article and Find Full Text PDF