This study explores how laser light affects the morphology of tetracene films, and it presents novel strategies for improving the creation of thin films used in (opto-)electronic devices. We demonstrate that laser light (532 nm, 1.1 W mm), applied during tetracene deposition, not only increases grain size but also induces photoalignment.
View Article and Find Full Text PDFDue to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network.
View Article and Find Full Text PDFX-ray reflectometry (XRR) is a powerful tool for probing the structural characteristics of nanoscale films and layered structures, which is an important field of nanotechnology and is often used in semiconductor and optics manufacturing. This study introduces a novel approach for conducting quantitative high-resolution millisecond monochromatic XRR measurements. This is an order of magnitude faster than in previously published work.
View Article and Find Full Text PDFRecently, there has been significant interest in applying machine-learning (ML) techniques to the automated analysis of X-ray scattering experiments, due to the increasing speed and size at which datasets are generated. ML-based analysis presents an important opportunity to establish a closed-loop feedback system, enabling monitoring and real-time decision-making based on online data analysis. In this study, the incorporation of a combined one-dimensional convolutional neural network (CNN) and multilayer perceptron that is trained to extract physical thin-film parameters (thickness, density, roughness) and capable of taking into account prior knowledge is described.
View Article and Find Full Text PDFMolecular motors have chemical properties that enable unidirectional motion, thus breaking microscopic reversibility. They are well studied in solution, but much less is known regarding their behavior on solid surfaces. Here, single motor molecules adsorbed on a Cu(111) surface are excited by voltages pulses from an STM tip, which leads to their rotation around a fixed pivot point.
View Article and Find Full Text PDF