Publications by authors named "S Kournopoulos"

Developing molecular equations of state to treat electrolyte solutions is challenging due to the long-range nature of the Coulombic interactions. Seminal approaches commonly used are the mean spherical approximation (MSA) and the Debye-Hückel (DH) theory to account for ion-ion interactions and, often, the Born theory of solvation for ion-solvent interactions. We investigate the accuracy of the MSA and DH approaches using each to calculate the contribution of the ion-ion interactions to the chemical potential of NaCl in water, comparing these with newly computer-generated simulation data; the ion-ion contribution is isolated by selecting an appropriate primitive model with a Lennard-Jones force field to describe the solvent.

View Article and Find Full Text PDF

The link between the static dielectric constant and the microscopic intermolecular interactions is the Kirkwood g factor, which depends on the orientational structure of the fluid. Over the years, there have been several attempts to provide an accurate description of the orientational structure of dipolar fluids using molecular theories. However, these approaches were either limited to mean-field approximations for the pair correlation function or, more recently, limited to adjusting the orientational dependence to simulation data.

View Article and Find Full Text PDF

The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes.

View Article and Find Full Text PDF