Publications by authors named "S Kotthaus"

Sensors that measure the attenuated backscatter coefficient (e.g., automatic lidars and ceilometers [ALCs]) provide information on aerosols that can impact urban climate and human health.

View Article and Find Full Text PDF

Air quality in cities is influenced not only by emissions and chemical transformations but also by the physical state of the atmosphere which varies both temporally and spatially. Increasingly, tall buildings (TB) are common features of the urban landscape, yet their impact on urban air flow and dispersion is not well understood, and their effects are not appropriately captured in parameterisation schemes. Here, hardware models of areas within two global mega-cities (London and Beijing) are used to analyse the impact of TB on flow and transport in isolated and cluster settings.

View Article and Find Full Text PDF

Wood burning is widely used for domestic heating and has been identified as a ubiquitous pollution source in urban areas, especially during cold months. The present study is based on a three and a half winter months field campaign in the Paris region measuring Volatile Organic Compounds (VOCs) by Proton Transfer Reaction Mass Spectrometry (PTR-MS) in addition to Black Carbon (BC). Several VOCs were identified as strongly wood burning-influenced (e.

View Article and Find Full Text PDF

Nine methods to determine local-scale aerodynamic roughness length and zero-plane displacement are compared at three sites (within 60 m of each other) in London, UK. Methods include three anemometric (single-level high frequency observations), six morphometric (surface geometry) and one reference-based approach (look-up tables). A footprint model is used with the morphometric methods in an iterative procedure.

View Article and Find Full Text PDF

Anthropogenic and biogenic controls on the surface-atmosphere exchange of CO2 are explored for three different environments. Similarities are seen between suburban and woodland sites during summer, when photosynthesis and respiration determine the diurnal pattern of the CO2 flux. In winter, emissions from human activities dominate urban and suburban fluxes; building emissions increase during cold weather, while traffic is a major component of CO2 emissions all year round.

View Article and Find Full Text PDF