Publications by authors named "S Koriki"

Here, we evaluated the reduction efficiencies of indigenous pepper mild mottle virus (PMMoV, a potential surrogate for human enteric viruses to assess virus removal by coagulation-sedimentation-rapid sand filtration [CS-RSF] and coagulation-microfiltration [C-MF]) and representative human enteric viruses in four full-scale drinking water treatment plants that use CS-RSF (Plants A and B) or C-MF (Plants C and D). First, we developed a virus concentration method by using an electropositive filter and a tangential-flow ultrafiltration membrane to effectively concentrate and recover PMMoV from large volumes of water: the recovery rates of PMMoV were 100% when 100-L samples of PMMoV-spiked dechlorinated tap water were concentrated to 20 mL; even when spiked water volume was 2000 L, recovery rates of >30% were maintained. The concentrations of indigenous PMMoV in raw and treated water samples determined by using this method were always above the quantification limit of the real-time polymerase chain reaction assay.

View Article and Find Full Text PDF

Evaluating the efficacy of disinfection processes to inactivate human enteric viruses is important for the prevention and control of waterborne diseases caused by exposure to those viruses via drinking water. Here, we evaluated the inactivation of two representative human enteric viruses (adenovirus type 40 [AdV] and coxsackievirus B5 [CV]) by thermal or free-chlorine disinfection. In addition, we compared the infectivity reduction ratio of a plant virus (pepper mild mottle virus [PMMoV], a recently proposed novel surrogate for human enteric viruses for the assessment of virus removal by coagulation‒rapid sand filtration and membrane filtration) with that of the two human enteric viruses to assess the suitability of PMMoV as a human enteric virus surrogate for use in thermal and free-chlorine disinfection processes.

View Article and Find Full Text PDF