Nanoscale flows of liquids can be revealed in various biological processes and underlie a wide range of nanofluidic applications. Though the integral characteristics of these systems, such as permeability and effective diffusion coefficient, can be measured in experiments, the behaviour of the flows within nanochannels is still a matter of speculation. Herein, we used a combination of quadrupolar solid-state NMR spectroscopy, computer simulation, and dynamic vapour sorption measurements to analyse water diffusion inside peptide nanochannels.
View Article and Find Full Text PDFSelf-organized peptides are unique materials with various applications in biology, medicine, and nanotechnology. Many of these applications require fabrication of homogeneous thin films having high piezoelectric effect and sufficiently low roughness. Recently, a facile method for the controlled deposition of flat solid films of the most studied peptide, diphenylalanine (FF), has been proposed, which is based on the crystallization of FF in the amorphous phase under the action of water vapor.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2022
Along with piezoelectric nanogenerators, triboelectric nanogenerators (TENGs) collecting energy from mechanical vibrations proved to be simple, low-cost, and efficient sources of electricity for various applications. In view of possible biomedical applications, the search for TENGs made of biomolecular and biocompatible materials is demanding. Diphenylalanine (FF) microstructures are promising for these applications due to their unique characteristics and ability to form various morphologies (microribbons, spherical vesicles, fibrils, micro- and nanotubes, nanorods, etc.
View Article and Find Full Text PDFMater Today Bio
September 2021
Magnetoelectric (ME) effect experimentally discovered about 60 years ago remains one of the promising research fields with the main applications in microelectronics and sensors. However, its applications to biology and medicine are still in their infancy. For the diagnosis and treatment of diseases at the intracellular level, it is necessary to develop a maximally non-invasive way of local stimulation of individual neurons, navigation, and distribution of biomolecules in damaged cells with relatively high efficiency and adequate spatial and temporal resolution.
View Article and Find Full Text PDFThe chirality quantification is of great importance in structural biology, where the differences in proteins twisting can provide essentially different physiological effects. However, this aspect of the chirality is still poorly studied for helix-like supramolecular structures. In this work, a method for chirality quantification based on the calculation of scalar triple products of dipole moments is suggested.
View Article and Find Full Text PDF