Publications by authors named "S Kolakovic"

The phototrophic capability of Candidatus Accumulibacter (Accumulibacter), a common polyphosphate accumulating organism (PAO) in enhanced biological phosphorus removal (EBPR) systems, was investigated in this study. Accumulibacter is phylogenetically related to the purple bacteria Rhodocyclus from the family Rhodocyclaceae, which belongs to the class Betaproteobacteria. Rhodocyclus typically exhibits both chemoheterotrophic and phototrophic growth, however, limited studies have evaluated the phototrophic potential of Accumulibacter.

View Article and Find Full Text PDF

Diclofenac is a pharmaceutical active compound frequently detected in wastewater and water bodies, and often reported to be persistent and difficult to biodegrade. While many previous studies have focussed on assessing diclofenac biodegradation in nitrification and denitrification processes, this study focusses on diclofenac biodegradation in the enhanced biological phosphorus removal (EBPR) process, where the efficiency of this process for diclofenac biodegradation as well as the metabolites generated are not well understood. An enrichment of Accumulibacter polyphosphate accumulating organisms (PAOs) was operated in an SBR for over 300 d, and acclimatized to 20 μg/L of diclofenac, which is in a similar range to that observed in domestic wastewater influents.

View Article and Find Full Text PDF

Accumulibacter is a well-known group of organisms, typically considered to be polyphosphate accumulating organisms (PAOs), but potentially capable of glycogen accumulating organism (GAO) metabolism under limiting influent phosphate levels. Metabolic features of Accumulibacter are typically linked to its phylogenetic identity at the Type or clade level, though it is unclear the extent to which Accumulibacter diversity can correlate with its capacity to perform P removal. This paper investigates the fine-scale diversity of Accumulibacter and its link with enhanced biological phosphorus removal (EBPR) performance under various operating conditions, to understand the conditions and community structure leading to successful and unsuccessful EBPR operation.

View Article and Find Full Text PDF