Phys Rev Lett
December 2024
Heterogeneity is ubiquitous in biological and synthetic active matter systems that are inherently out of equilibrium. Typically, such active mixtures involve not only conservative interactions between the constituents but also nonreciprocal couplings, whose full consequences for the collective behavior still remain elusive. Here, we study a minimal active nonreciprocal mixture with both symmetric isotropic and nonreciprocal polar interactions.
View Article and Find Full Text PDFPhys Rev E
November 2024
Using the framework of stochastic thermodynamics we study heat production related to the stochastic motion of a particle driven by repulsive, nonlinear, time-delayed feedback. Recently it has been shown that this type of feedback can lead to persistent motion above a threshold in parameter space [R. A.
View Article and Find Full Text PDFThe construction of coarse-grained descriptions of a system's kinetics is well established in biophysics. One prominent example is Markov state models in protein folding dynamics. In this paper, we develop a coarse-grained, discrete state model of a self-aggregating colloidal particle system inspired by the concepts of Markov state modeling.
View Article and Find Full Text PDFNon-reciprocal (NR) effective interactions violating Newton's third law occur in many biological systems, but can also be engineered in synthetic, colloidal systems. Recent research has shown that such NR interactions can have tremendous effects on the overall collective behavior and pattern formation, but can also influence aggregation processes on the particle scale. Here, we focus on the impact of non-reciprocity on the self-assembly of a colloidal system (originally passive) with anisotropic interactions whose character is tunable by external fields.
View Article and Find Full Text PDFWe discuss the two-dimensional motion of a Brownian particle that is confined to a harmonic trap and driven by a shear flow. The surrounding medium induces memory effects modeled by a linear, typically nonreciprocal coupling of the particle coordinates to an auxiliary (hidden) variable. The system's behavior resulting from the microscopic Langevin equations for the three variables is analyzed by means of exact moment equations derived from the Fokker-Planck representation, and numerical Brownian dynamics simulations.
View Article and Find Full Text PDF