Publications by authors named "S Kins"

The amyloid precursor protein (APP) can be modulated by the binding of copper and zinc ions. Both ions bind with low nanomolar affinities to both subdomains (E1 and E2) in the extracellular domain of APP. However, the impact of ion binding on structural and mechanical trans-dimerization properties is yet unclear.

View Article and Find Full Text PDF

Increased intake of dietary antioxidants such as anthocyanins, which are enriched in colourful fruits, is a promising alternative to reduce the risk of degenerative diseases such as Alzheimer's Disease (AD). Since Amyloid β (Aβ) is one of the key components contributing to AD pathology, probably by reactive oxygen species (ROS) induction, this study investigated the preventive effect of anthocyanin-rich bilberry extract (BE) and its anthocyanin fraction (ACN) on ROS generation and cell toxicity. The results showed a significant and concentration-dependent decrease in neuroblastoma cell (SH-SY5Y) viability by BE or ACN, whereas no cell toxicity was observed in HeLa cells.

View Article and Find Full Text PDF

Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) is a key molecular component of Alzheimer's disease (AD) pathogenesis. Proteolytic APP processing generates various cleavage products, including extracellular amyloid beta (Aβ) and the cytoplasmic APP intracellular domain (AICD). Although the role of AICD in the activation of kinase signaling pathways is well established in the context of full-length APP, little is known about intracellular effects of the AICD fragment, particularly within discrete neuronal compartments.

View Article and Find Full Text PDF

Background: The amyloid precursor protein (APP), a key player in Alzheimer's disease (AD), is part of a larger gene family, including the APP like proteins APLP1 and APLP2. They share similar structures, form homo- and heterotypic dimers and exhibit overlapping functions.

Results: We investigated complex formation of the APP family members via two inducible dimerization systems, the FKBP-rapamycin based dimerization as well as cysteine induced dimerization, combined with co-immunoprecipitations and Blue Native (BN) gel analyses.

View Article and Find Full Text PDF