Publications by authors named "S Khelissa"

Biofilms are involved in serious problems in medical and food sectors due to their contribution to numerous severe chronic infections and foodborne diseases. The high resistance of biofilms to antimicrobial agents makes their removal as a big challenge. In this study, spray-drying was used to develop microcapsules containing carvacrol, a natural antimicrobial agent, to enhance its activity against P.

View Article and Find Full Text PDF

Biofilm formation on abiotic surfaces has become a major public health concern because of the serious problems they can cause in various fields. Biofilm cells are extremely resistant to stressful conditions, because of their complex structure impedes antimicrobial penetration to deep-seated cells. The increased resistance of biofilm to currently applied control strategies underscores the urgent need for new alternative and/or supplemental eradication approaches.

View Article and Find Full Text PDF

Environmental conditions in food and medical fields enable the bacteria to attach and grow on surfaces leading to resistant bacterial biofilm formation. Indeed, the first step in biofilm formation is the bacterial irreversible adhesion. Controlling and inhibiting this adhesion is a passive approach to fight against biofilm development.

View Article and Find Full Text PDF

Bioactive aminooxime ligands based on optically pure (R)-limonene have been synthesized in two steps. Their ruthenium (II) cationic water-soluble complex was prepared by a reaction between dichloro (para-cymene) ruthenium (II) dimers and aminooxime ligands in a 1:2 molar ratio. Antibacterial and antibiofilm activities of the synthetized complex were assessed against , , , and The results revealed that the ruthenium (II) complex has higher antibacterial and antibiofilm activities in comparison with free ligands or the enantiopure (R)-limonene.

View Article and Find Full Text PDF

In this study, we evaluated the effect of complexation and microencapsulation with pea protein on the antioxidant activity of protein hydrolysates from bycatch in Brazil. The zeta potential values of complexes changed from negative to positive with the increase of pea protein as a result of positively charged complexes formation. The increase in the ratio of pea protein/hydrolysates also resulted in increased turbidity in all samples.

View Article and Find Full Text PDF