Publications by authors named "S Khangulov"

Synthesis, solution structures, and electrochemistry of several dinuclear Mn2(II,II) complexes (1-4) and Mn2(III,III) complexes (6 and 8), derived from a functional catalase mimic [(L1,2)Mn2(II,II)(mu 13-O2CCH3)]2+ (1) are described that enable testing of the role of intramolecular hydroxide ligands on the redox properties. Addition of 1 equiv of hydroxide to 1 or 3 forms [(L1,2)Mn2(II,II)(mu 13-O2CCH3)(mu- OH)]+ (7A or 7B, respectively), possessing two six-coordinate Mn(II) ions bridged by hydroxide and acetato ligands. Two-electron oxidation of 7 with O2 occurs by forming [(L1,2)Mn2(III,III)(mu 1,3-O2CCH3)(mu-OH)]3+ (8) and H2O2 with no ligand rearrangements in methanol.

View Article and Find Full Text PDF

Rat liver arginase contains a dimanganese(II,II) center per subunit that is required for catalytic hydrolysis of l-arginine to form urea and l-ornithine. A recent crystallographic study has shown that the Mn2 center consists of two coordinatively inequivalent manganese(II) ions, MnA and MnB, bridged by a water (hydroxide) molecule and two aspartate residues [Kanyo et al. (1996) Nature 383, 554-557].

View Article and Find Full Text PDF

Formate dehydrogenase H, FDH(Se), from Escherichia coli contains a molybdopterin guanine dinucleotide cofactor and a selenocysteine residue in the polypeptide. Oxidation of 13C-labeled formate in 18O-enriched water catalyzed by FDH(Se) produces 13CO2 gas that contains no 18O-label, establishing that the enzyme is not a member of the large class of Mo-pterin-containing oxotransferases which incorporate oxygen from water into product. An unusual Mo center of the active site is coordinated in the reduced Mo(IV) state in a square pyramidal geometry to the four equatorial dithiolene sulfur atoms from a pair of pterin cofactors and a Se atom of the selenocysteine-140 residue [Boyington, J.

View Article and Find Full Text PDF

Formate dehydrogenase H from Escherichia coli contains selenocysteine (SeCys), molybdenum, two molybdopterin guanine dinucleotide (MGD) cofactors, and an Fe4S4 cluster at the active site and catalyzes the two-electron oxidation of formate to carbon dioxide. The crystal structures of the oxidized [Mo(VI), Fe4S4(ox)] form of formate dehydrogenase H (with and without bound inhibitor) and the reduced [Mo(IV), Fe4S4(red)] form have been determined, revealing a four-domain alphabeta structure with the molybdenum directly coordinated to selenium and both MGD cofactors. These structures suggest a reaction mechanism that directly involves SeCys140 and His141 in proton abstraction and the molybdenum, molybdopterin, Lys44, and the Fe4S4 cluster in electron transfer.

View Article and Find Full Text PDF

The selenocysteine-containing formate dehydrogenase H (FDH) is an 80-kDa component of the Escherichia coli formate-hydrogen lyase complex. The molybdenum-coordinated selenocysteine is essential for catalytic activity of the native enzyme. FDH in dilute solutions (30 microg/ml) was rapidly inactivated at basic pH or in the presence of formate under anaerobic conditions, but at higher enzyme concentrations (>/=3 mg/ml) the enzyme was relatively stable.

View Article and Find Full Text PDF