Publications by authors named "S Khachonkham"

Aims: The dosimetric leaf gap (DLG) is a parameter for correcting radiation transmission through the round leaf end of multileaf collimators. The purpose of this study was to determine and investigate the optimal DLG correction factor for 6 MV volumetric-modulated arc radiotherapy (VMAT) plan dose calculations in Mobius3D.

Materials And Methods: Seventeen VMAT plans were selected for the DLG correction factor optimization process.

View Article and Find Full Text PDF

Purpose: Image registration is a crucial component of the adaptive radiotherapy workflow. This study investigates the accuracy of the deformable image registration (DIR) and contour propagation features of SmartAdapt, an application in the Eclipse treatment planning system (TPS) version 16.1.

View Article and Find Full Text PDF

Objectives: The purpose of this study was to investigate the stability of dosiomic features under random interfractional error. We investigated the differences in the values of features with different fractions and the error in the values of dosiomic features under interfractional error.

Material And Methods: The isocenters of the treatment plans of 15 lung cancer patients were translated by a maximum of ±3 mm in each axis with a mean of (0, 0, 0) and a standard deviation of (1.

View Article and Find Full Text PDF

Purpose: The aim was to investigate the advantages of dosiomic and radiomic features over traditional dose-volume histogram (DVH) features for predicting the development of radiation pneumonitis (RP), to validate the generalizability of dosiomic and radiomic features by using features selected from an esophageal cancer dataset and to use these features with a lung cancer dataset.

Materials And Methods: A dataset containing 101 patients with esophageal cancer and 93 patients with lung cancer was included in this study. DVH and dosiomic features were extracted from 3D dose distributions.

View Article and Find Full Text PDF

Objective: The purpose of this study was to develop a model using dose volume histogram (DVH) and dosiomic features to predict the risk of radiation pneumonitis (RP) in the treatment of esophageal cancer with radiation therapy and to compare the performance of DVH and dosiomic features after adjustment for the effect of fractionation by correcting the dose to the equivalent dose in 2 Gy (EQD2).

Materials And Methods: DVH features and dosiomic features were extracted from the 3D dose distribution of 101 esophageal cancer patients. The features were extracted with and without correction to EQD2.

View Article and Find Full Text PDF