Guanabenz (GBZ), an α-adrenergic agonist, demonstrated off-target effects that restored protein homeostasis and ameliorated pathobiology in experimental models of neurodegenerative disease. However, GBZ did not directly activate the integrated stress response (ISR), and its proposed mode of action remains controversial. Utilizing an iterative screen of over 10,000 GBZ analogues, we analyzed 432 representative compounds for cytotoxicity in Wild-type, PPP1R15A-/-, and PPP1R15B-/- mouse embryonic fibroblasts.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor nerve cells in the brain and the spinal cord. Etiological mechanisms underlying the disease remain poorly understood; recent studies suggest that deregulation of p25/Cyclin-dependent kinase 5 (Cdk5) activity leads to the hyperphosphorylation of Tau and neurofilament (NF) proteins in ALS transgenic mouse model (SOD1G37R). A Cdk5 involvement in motor neuron degeneration is supported by analysis of three SOD1G37R mouse lines exhibiting perikaryal inclusions of NF proteins and hyperphosphorylation of Tau.
View Article and Find Full Text PDFSeveral studies have indicated that neuroinflammation is indeed associated with neurodegenerative disease pathology. However, failures of recent clinical trials of anti-inflammatory agents in neurodegenerative disorders have emphasized the need to better understand the complexity of the neuroinflammatory process in order to unravel its link with neurodegeneration. Deregulation of Cyclin-dependent kinase 5 (Cdk5) activity by production of its hyperactivator p25 is involved in the formation of tau and amyloid pathology reminiscent of Alzheimer's disease (AD).
View Article and Find Full Text PDFIt has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.
View Article and Find Full Text PDFThe aberrant hyperactivation of Cyclin-dependent kinase 5 (Cdk5), by the production of its truncated activator p25, results in the formation of hyperphosphorylated tau, neuroinflammation, amyloid deposition, and neuronal death in vitro and in vivo. Mechanistically, this occurs as a result of a neurotoxic insult that invokes the intracellular elevation of calcium to activate calpain, which cleaves the Cdk5 activator p35 into p25. It has been shown previously that the p25 transgenic mouse as a model to investigate the mechanistic implications of p25 production in the brain, which recapitulates deregulated Cdk5-mediated neuropathological changes, such as hyperphosphorylated tau and neuronal death.
View Article and Find Full Text PDF