A combination of a Keggin-type polyoxometalate (POM), [CuPW11O39](5-), with a Cu3(BTC)2 metal-organic framework (MOF-199/HKUST-1; where BTC is benzene-1,3,5-tricarboxylate), was successfully self-assembled on a cellulose substrate (cotton) with a room-temperature process. Cotton fibers were functionalized by partial etherification. Cu3(BTC)2 metal-organic framework and polyoxometalate encapsulated in Cu3(BTC)2 metal-organic framework were self-assembled on the carboxymethylate ion sites initiated with copper nitrate using ethanol and water as solvents.
View Article and Find Full Text PDFArch Environ Contam Toxicol
February 2012
Dermal absorption of pesticides poses a danger for agricultural workers. Use of personal protection equipment (PPE) is required to provide protection; some of the current PPE involves impermeable barriers. In these barrier materials, the same mechanism that prevents the penetration of toxic chemicals also blocks the passage of water vapor and air from flowing through the material, making the garments uncomfortable.
View Article and Find Full Text PDFArch Environ Contam Toxicol
October 2010
Antifungal properties were introduced in nonwoven regenerated cellulose (RC) nanofibrous membrane using Quillaja saponin. To generate cellulose membranes, deacetylation of electrospun cellulose acetate (CA) nanofibrous membranes was performed using 0.05 M NaOH and ethanol for membranes both loaded and unloaded with Quillaja saponin.
View Article and Find Full Text PDFPhotocatalytic properties of fibers containing TiO2 nanoparticles were explored for use as a self-decontaminating material using degradation of the pesticide aldicarb as the model toxin. During the analysis of the aldicarb treated sample by liquid chromatography (LC) with diode array detector (DAD), an unidentified peak was found at relative retention time (RT) 3.9 min when compared to aldicarb and major metabolites, aldicarb sulfoxide, and aldicarb sulfone.
View Article and Find Full Text PDFArch Environ Contam Toxicol
January 2006
Residues for 17 pesticides were analyzed in 41 households in central New York State that represented farm, rural, and urban houses. Samples were taken in both summer and winter of 2000-2001 from the same households from four locations; family room carpet; adjacent smooth floor; flat tabletop surface; and settled dust collected in a Petri dish on a tabletop. Pesticide residues were analyzed to identity factors that influence both the transport into and the redistribution of pesticides in the indoor environment.
View Article and Find Full Text PDF