Multicomponent reactions have long been recognized as some of the most versatile tools in organic chemistry, with extensive applications in biomedical science and the pharmaceutical industry. In this study, we explored the potential of the Passerini reaction by designing and synthesizing new low molecular mass gelators that can serve as novel formulations for prolonged anesthesia. These gelators address critical issues like poor solubility, low bioavailability, and short plasma half-life, all of which hinder therapeutic efficacy.
View Article and Find Full Text PDFUrinary tract infections are a common condition affecting people globally, with multidrug-resistant (MDR) Escherichia coli (E. coli) being a major causative agent. Antimicrobial susceptibility profiling was performed using the VITEK 2 automated system for 1254 E.
View Article and Find Full Text PDFBackground: The July effect in US teaching hospitals has been studied with conflicting results. We aimed to evaluate the effect of physician turnover in July on the clinical outcomes of patients hospitalized with cirrhosis.
Methods: We utilized the Nationwide Inpatient Sample database (2016-2019) to identify patients hospitalized with cirrhosis and liver-related complications (variceal bleeding, hepatorenal syndrome, acute-on-chronic liver failure).
Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.
View Article and Find Full Text PDF