Publications by authors named "S Karamursel"

Background: While high-frequency oscillations (HFOs) and their stereotyped clusters (sHFOs) have emerged as potential neuro-biomarkers for the rapid localization of the seizure onset zone (SOZ) in epilepsy, their clinical application is hindered by the challenge of automated elimination of pseudo-HFOs originating from artifacts in heavily corrupted intraoperative neural recordings. This limitation has led to a reliance on semi-automated detectors, coupled with manual visual artifact rejection, impeding the translation of findings into clinical practice.

Methods: In response, we have developed a computational framework that integrates sparse signal processing and ensemble learning to automatically detect genuine HFOs of intracranial EEG data.

View Article and Find Full Text PDF

Understanding the electrophysiological properties of antidepressant medications is important to resolve the response heterogeneity of these drugs in clinical practice. Administration of paroxetine, a selective serotonin reuptake inhibitor, has been shown to increase serotonin levels that affect cortical activities in healthy subjects. However, the extent to which cortical oscillations can be altered by ongoing administration of paroxetine is not known.

View Article and Find Full Text PDF

Objectives: Transcranial direct current stimulation (tDCS) has been suggested as an alternative treatment option for migraine. The present study aimed to evaluate the efficacy of tDCS on clinical outcomes in addition to calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide 38 (PACAP-38) levels in individuals with menstrual-related migraine (MRM) for the first time.

Materials And Methods: In this parallel study, 58 female patients between the ages of 18 and 45 years, including 36 with MRM and 22 with nonmenstrual migraines (nMM), were recruited.

View Article and Find Full Text PDF

Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive technique, used to modify the excitability of the central nervous system. The main mechanism of tDCS is to change the excitability by subthreshold modulation by affecting neuronal membrane potentials in the direction of depolarization or repolarization. tDCS was previously investigated as an alternative adjunctive therapy in patients with epilepsy.

View Article and Find Full Text PDF