The efficiency with which a dairy cow utilises feed for the various physiological and metabolic processes can be evaluated by metrics that contrast realised feed intake with expected feed intake. In this study, we presented a new metric - regression on expected feed intake (ReFI). This metric is based on the idea of regressing DM intake (DMI) on expected DMI using a random regression model, where energy requirement formulations are applied for the calculation of expected DMI covariables.
View Article and Find Full Text PDFIn high-yielding dairy cattle, severe postpartum negative energy balance is often associated with metabolic and infectious disorders that negatively affect production, fertility, and welfare. Mobilization of adipose tissue associated with negative energy balance is reflected through an increased level of nonesterified fatty acids (NEFA) in the blood plasma. Earlier, identification of negative energy balance through detection of increased blood plasma NEFA concentration required laborious and stressful blood sampling.
View Article and Find Full Text PDFThe inclusion of feed intake and efficiency traits in dairy cow breeding goals can lead to increased risk of metabolic stress. An easy and inexpensive way to monitor postpartum energy status (ES) of cows is therefore needed. Cows' ES can be estimated by calculating the energy balance from energy intake and output and predicted by indicator traits such as change in body weight (ΔBW), change in body condition score (ΔBCS), milk fat:protein ratio (FPR), or milk fatty acid (FA) composition.
View Article and Find Full Text PDFThe aim of the present study was to evaluate empirically confusion matrices in device validation. We compared the confusion matrix method to linear regression and error indices in the validation of a device measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on classification errors with confusion probabilities.
View Article and Find Full Text PDF