Publications by authors named "S K Zaripova"

The efficiency of an oil-oxidizing microbial community in the bioremediation of oil-polluted soil was studied under laboratory conditions. A specific feature of the community was its ability to oxidize oil hydrocarbons under both aerobic and anoxic conditions. The degree of oil-hydrocarbon degradation in various bioremediation modes increased as follows: self-remediation (40%) < nitrate application (42%) < introduction of the denitrifying oil-oxidizing community (50%) < introduction of the denitrifying oil-oxidizing community plus nitrate application (60%).

View Article and Find Full Text PDF

2,4,6-Trinitrotoluene (TNT), a toxic nitroaromatic explosive, accumulates in the environment, making necessary the remediation of contaminated areas and unused materials. Although bioremediation has been utilized to detoxify TNT, the metabolic processes involved in the metabolism of TNT have proven to be complex. The three aerobic bacterial strains reported here (Pseudomonas aeruginosa, Bacillus sp.

View Article and Find Full Text PDF

The regulation of terephthalate catabolism was studied in Rhodococcus rubropertinctus which decomposed this synthetic monomer. The pathway (a) of terephthalate (TP) catabolism is as follows: TP----benzoate----4-hydroxybenzoate----protocatechuate----pyrocatechol-- --cycle ortho-cleavage. The following results were obtained when studying why two other catabolic pathways were realized if benzoate and 4-hydroxybenzoate were taken as a sole carbon source, namely, (b) benzoate----pyrocatechol----cycle cleavage and (c) 4-hydroxybenzoate----protocatechuate----cycle cleavage.

View Article and Find Full Text PDF