Publications by authors named "S K Purohit"

Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.

View Article and Find Full Text PDF

The pace of research efforts has been extraordinarily accelerated across the globe to address the contamination issues caused by pesticides, and fertilizers, especially in the aquatic ecosystem. The sole aim of this study was to assess the effect of urea on Nile tilapia (Oreochromis niloticus). For this purpose, the fish fingerlings were exposed to increasing concentrations of urea such as 0, 1, 2.

View Article and Find Full Text PDF

Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems.

View Article and Find Full Text PDF

Background: Socioeconomic status has historically influenced traumatic brain injury (TBI) outcomes, yet pediatric TBI disparities remain understudied. We aimed to analyze the National Inpatient Sample database for socioeconomic disparities in the outcomes of pediatric TBI patients.

Methods: The National Inpatient Sample from 2011 to 2020 was retrospectively analyzed for pediatric TBI patients.

View Article and Find Full Text PDF

Introduction: Critical-size bone defects in distal tibial open wounds pose a formidable challenge, requiring interventions that can address osseous reconstruction with less number of surgeries. Current treatment modalities may fall short in achieving optimal outcomes, with respect to early weight bearing due to the inability of the graft to sustain weight, graft-related infections, non-union in large defects, donor site morbidity, and non-availability of bone grafts due to earlier harvest. This case report explores the potential application of a 3D-printed mesh implant to this complex clinical scenario.

View Article and Find Full Text PDF