Publications by authors named "S K Mandal"

Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.

View Article and Find Full Text PDF

Three 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-thione Zn(II) halide complexes (1-3) and one 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-selone Zn(II) dichloride complex (4) were synthesized and characterized. Complexes 2, 3, and 4 exhibited distorted tetrahedral geometries, while complex 1 adopted a regular tetrahedral geometry. All these complexes displayed emission in the crystalline state, with complex 3 emitting in the yellow region and complex 1 and 4 in the blue region, while complex 2 gave a bluish-green emission.

View Article and Find Full Text PDF

We show that a non-Hermitian lattice with a disclination can host topological disclination states that are induced by on-site gain and loss. The disclination states are inherently non-Hermitian as they do not exist in the limit of zero gain or loss. They arise from charge fractionalization in the non-Hermitian lattice, which we establish using non-Hermitian Wilson loops calculated with biorthogonal products.

View Article and Find Full Text PDF

Herein, we describe a sustainable Co(II)-catalyzed synthesis of pyrroles and pyridines. Using a Co(II)-catalyst [CoII2(La)2Cl2] (1a) bearing redox-active 2-(phenyldiazenyl)-1,10-phenanthroline) (La) scaffold, various substituted pyrroles and pyridines were synthesized in good yields, taking alcohol as one of the primary feedstock. Pyrroles were synthesized by the equimolar reaction of 2-amino and secondary alcohols.

View Article and Find Full Text PDF

Peripheral ameloblastoma is a rare, benign, slow-growing odontogenic neoplasm prevalent in the mandible. It originates from the odontogenic epithelium and its remnants, and its histological characteristics are identical to those of intraosseous ameloblastoma. It is less aggressive and invasive than its intraosseous variety, with a low recurrence rate.

View Article and Find Full Text PDF