Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been recognized as the most reliable diagnostic tool. However, there is a need to develop multiplexed assays capable of analyzing multiple genes simultaneously to expand its application. To address this, a multiplexed RT-qPCR using a double emulsion (DE)-based carrier and a polymer microparticle reactor, termed primer-incorporated network tailored with Taqman probe (TaqPIN) is developed.
View Article and Find Full Text PDFBackground: SB17 is being developed as a biosimilar to ustekinumab reference product (RP), a human monoclonal antibody (IgG1 kappa immunoglobulin) that binds to the common p40 subunit of cytokines interleukin (IL)-23 and IL-12. Binding to this subunit prevents interaction with their receptor, resulting in modulation in the immune system responses that play a key role in inflammatory disease.
Objective: The objective of this study was to demonstrate structural, physicochemical, and biological similarity between ustekinumab RP and SB17 using various state-of-the-art analytical methods.
Mercury (Hg) is a contaminant that poses health risks for human populations relying on seafood consumption. To mitigate its impact, identifying and monitoring Hg sources have become priorities, notably under the Minamata Convention. Bivalves are commonly used as sentinels in contaminant biomonitoring but can accumulate Hg from diverse environmental media.
View Article and Find Full Text PDFMotivation: Microbiota-derived metabolites significantly impact host biology, prompting extensive research on metabolic shifts linked to the microbiota. Recent studies have explored both direct metabolite analyses and computational tools for inferring metabolic functions from microbial shotgun metagenome data. However, no existing tool specifically focuses on predicting changes in individual metabolite levels, as opposed to metabolic pathway activities, based on shotgun metagenome data.
View Article and Find Full Text PDF