The interaction (oblique collision) of two ion acoustic solitons (IASs) in a magnetized relativistic degenerate plasma with relativistic degenerate electrons and non-degenerate cold ions is studied. The extended Poincaré-Lighthill-Kuo (PLK) method is used to obtain two Korteweg deVries (KdV) wave equations that describe the interacting IASs, then the phase shifts due to interaction are calculated. We studied influence of the fluid number density on the interaction process, interacting solitons phase shifts and also phase velocities.
View Article and Find Full Text PDFA new approach to understand the electron/hole interfaced plasma in GaN high electron mobility transistors (HEMTs). A quantum hydrodynamic model is constructed to include electrons/holes degenerate pressure, Bohm potential, and the exchange/correlation effect and then reduced to the nonlinear Schrödinger equation (NLSE). Numerical analysis of the latter predicts the rough (in)stability domains, which allow for the rogue waves to occur.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2013
Propagation of dust acoustic waves (DAWs) with the effect of power law dust size distribution (DSD) in a magnetized dusty plasma with opposite polarity dust is studied. Using a reductive perturbation method, a Zakharov-Kuznetsov equation appropriate for describing three-dimensional DAWs is derived. The compressive and rarefactive solitons are possible in the present model.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2011
We present an investigation for the generation of a dust-acoustic rogue wave in a dusty plasma composed of negatively charged dust grains, as well as nonextensive electrons and ions. For this purpose, the reductive perturbation technique is used to obtain a nonlinear Schrödinger equation. The critical wave-number threshold k(c), which indicates where the modulational instability sets in, has been determined precisely for various regimes.
View Article and Find Full Text PDFBacterial-host attachment by means of bacterial adhesins is a key step in host colonization. Phase variation (reversible on-off switching) of the type 1 fimbrial adhesin of Escherichia coli involves a DNA inversion catalyzed by FimB (switching in either direction) or FimE (mainly on-to-off switching). fimB is separated from the divergent yjhATS operon by a large (1.
View Article and Find Full Text PDF