Publications by authors named "S K Callear"

We have investigated caesium hydrogen sulfate, CsHSO, in all three of its ambient pressure phases by total scattering neutron diffraction, inelastic neutron scattering (INS) and Raman spectroscopies and periodic density functional theory calculations. Above 140 °C, CsHSO, undergoes a phase transition to a superprotonic conductor that has potential application in intermediate temperature fuel cells. Total scattering neutron diffraction data clearly show that all the existing structures of this phase are unable to describe the local structure, because they have either partial occupancies of the atoms and/or non-physical O-H distances.

View Article and Find Full Text PDF

The intermolecular interactions in concentrated (5 M) aqueous imidazole solutions have been investigated by combining neutron diffraction with isotopic substitution, total X-ray scattering and empirical potential structure refinement (EPSR) simulations using a box containing 5530 water and 500 imidazole molecules. The structural model with the best fit was used to generate radial distribution functions and spatial density functions. The local volume surrounding imidazole molecules is dominated by water, due to strong hydrogen-bonding between the nitrogen moieties of imidazole and water molecules; within a radius of 6.

View Article and Find Full Text PDF

The relative amounts of hydrogen retained by a range of supported palladium catalysts have been investigated by a combination of electron microscopy and spectroscopic techniques, including incoherent inelastic neutron scattering. Contrary to expectation, the hydrogen capacity is not determined solely by the metal particle size, but it is a complex interaction between the particle size and its state of aggregation. The nature of the support is not only integral to the amount of hydrogen held by the catalyst, it also causes a marked difference in the rate of release of stored hydrogen from palladium.

View Article and Find Full Text PDF

1:2 choline chloride:urea and 1:1 choline chloride:oxalic acid deep eutectic solvents are compared at 338 K using liquid-phase neutron diffraction with H/D isotopic substitution to obtain differential neutron scattering cross sections and fitting of models to the experimental data using Empirical Potential Structure Refinement. In comparison to the previously reported study of choline chloride:urea at 303 K, we observed significant weakening and lengthening of choline-OH⋯Cl and choline-OH⋯hydrogen-bond acceptor correlations.

View Article and Find Full Text PDF

The solvation structures of two systems rich in hydrogen and dihydrogen bonding interactions have been studied in detail experimentally through neutron diffraction with hydrogen/deuterium isotopic substitution. The results were analysed by an atomistic Monte Carlo simulation employing refinement to the experimental scattering data. The systems studied were the hydrogen storage material ammonia borane (NH3BH3, AB) dissolved in tetrahydrofuran (THF), and liquid ammonia (NH3), the latter in which AB shows unusually high solubility (260 g AB per 100 g NH3) and potential regeneration properties.

View Article and Find Full Text PDF