An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization.
View Article and Find Full Text PDFPhoto-oxidative skin damage is mainly caused by the UV-A radiation of the sun. Synthetic sunscreens used to counter this acts mostly on the superficial skin layer and possess serious side effects. P-coumaric acid (PCA) is a UV-A protective plant phenolic having quick diffusion and distribution in superficial skin layers limiting its application as herbal sunscreen.
View Article and Find Full Text PDFspecies is one of the most widely consumed spices for culinary purposes. Piperine (PIP) present in species has a wide range of therapeutic activity including hepatoprotection. However, the major biological limitation of PIP is its low bioavailability after oral administration.
View Article and Find Full Text PDFObjective: To prepare and characterize an optimized phospholipid complex of Ursolic acid (UA) to overcome the poor pharmacokinetic properties and to investigate the impact of the complex on hepatoprotective activity and bioavailability in animal model.
Significance: UA is a potential phytoconstituent obtained from several plant sources, which has been explored for its diverse pharmacological activities including hepatoprotection. Its major limitation is poor absorption, rapid elimination, and hence low bioavailability after administration.
Introduction: has a small genome and a tendency of persisting as a very low-grade infection. The authors have shown earlier, that the changes in TTC repeats, in genome may contribute to the restriction of the pathogenicity of the bacterium and its survival strategy in case of pure neural Hansen's disease. We suspect, that a similar genomic reduction if happens in treated cases of Hansen's disease, can be a determining factor for developing persisters and relapse.
View Article and Find Full Text PDF