Vaccines (Basel)
February 2021
Non-typhoidal are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal .
View Article and Find Full Text PDFContagious Bovine Pleuropneumonia (CBPP) is a severe respiratory disease caused by Mycoplasma mycoides subsp. mycoides (Mmm) which is widespread in Africa. The capsule polysaccharide (CPS) of Mmm is one of the few identified virulence determinants.
View Article and Find Full Text PDFProtective efficacy against bovine herpesvirus 1 (BoHV-1) has been demonstrated to be induced by a plasmid encoding bovine neutrophil beta-defensin 3 (BNBD3) as a fusion construct with truncated glycoprotein D (tgD). However, in spite of the increased cell-mediated immune responses induced by this DNA vaccine, the clinical responses of BoHV-1-challenged cattle were not reduced over those observed in animals vaccinated with the plasmid encoding tgD alone; this might have been because the vaccine failed to improve humoral responses. We hypothesized that an alternative vaccine design strategy that utilized the DNA vaccine pMASIA-tgD as a complex with BNBD3 might improve humoral responses while maintaining robust Th1-type cell-mediated responses.
View Article and Find Full Text PDFTracheal antimicrobial peptide (TAP) is a β-defensin produced by mucosal epithelial cells of cattle. Although effective against several human pathogens, the activity of this bovine peptide against the bacterial pathogens that cause bovine respiratory disease have not been reported. This study compared the antibacterial effects of synthetic TAP against Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis.
View Article and Find Full Text PDFVet Immunol Immunopathol
September 2011
Human and murine immature DCs (iDCs) are highly efficient in antigen capture and processing, while as mature cells they present antigen and are potent initiators of cell-mediated immune responses. Consequently, iDCs are logical targets for vaccine antigens. Originally discovered for their antimicrobial activity, and thought of as strictly part of the innate immune system, studies with defensins such as human β (beta)-defensin 2 (hBD2) and murine β-defensin 2 (mBD2) have shown that they can function as chemo-attractant for iDCs and, in vaccination strategies, can enhance antigen-specific adaptive immune responses.
View Article and Find Full Text PDF