Publications by authors named "S Justham"

All stellar-mass black holes have hitherto been identified by X-rays emitted from gas that is accreting onto the black hole from a companion star. These systems are all binaries with a black-hole mass that is less than 30 times that of the Sun. Theory predicts, however, that X-ray-emitting systems form a minority of the total population of star-black-hole binaries.

View Article and Find Full Text PDF

The formation of relativistic jets by an accreting compact object is one of the fundamental mysteries of astrophysics. Although the theory is poorly understood, observations of relativistic jets from systems known as microquasars (compact binary stars) have led to a well established phenomenology. Relativistic jets are not expected to be produced by sources with soft or supersoft X-ray spectra, although two such systems are known to produce relatively low-velocity bipolar outflows.

View Article and Find Full Text PDF

There are two proposed explanations for ultraluminous X-ray sources (ULXs) with luminosities in excess of 10(39) erg s(-1). They could be intermediate-mass black holes (more than 100-1,000 solar masses, M sun symbol) radiating at sub-maximal (sub-Eddington) rates, as in Galactic black-hole X-ray binaries but with larger, cooler accretion disks. Alternatively, they could be stellar-mass black holes radiating at Eddington or super-Eddington rates.

View Article and Find Full Text PDF

Common-envelope events (CEEs), during which two stars temporarily orbit within a shared envelope, are believed to be vital for the formation of a wide range of close binaries. For decades, the only evidence that CEEs actually occur has been indirect, based on the existence of systems that could not be otherwise explained. Here we propose a direct observational signature of CEEs arising from a physical model where emission from matter ejected in a CEE is controlled by a recombination front as the matter cools.

View Article and Find Full Text PDF