Publications by authors named "S Jouen"

We report evidence for the electrochemical activity of transition-metal carbodiimides versus lithium and sodium. In particular, iron carbodiimide, FeNCN, can be efficiently used as negative electrode material for alkali-metal-ion batteries, similar to its oxide analogue FeO. Based on (57)Fe Mössbauer and infrared spectroscopy (IR) data, the electrochemical reaction mechanism can be explained by the reversible transformation of the Fe-NCN into Li/Na-NCN bonds during discharge and charge.

View Article and Find Full Text PDF

In multiferroic BiFeO(3) thin films grown on highly mismatched LaAlO(3) substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasiconcomitantly presents an abrupt structural change, transforms from a standard to a nonconventional ferroelectric, and transitions from antiferromagnetic to paramagnetic at 360±20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric, and piezomagnetic responses, with potential in many applications fields.

View Article and Find Full Text PDF

An Fe-metal complex with 2'-hydroxy chalcone (2'-HC) ligands [Fe(III) (2'-hydroxy chalcone)(3)] is synthesized by a chemical route and is subjected to different thermal treatments. Upon thermolysis in air at 450 °C for 3 h the complex yields maghemite (γ-Fe(2)O(3)) nanorods with a thin hematite (α-Fe(2)O(3)) shell. X-Ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflectance spectroscopy (UV-DRS), high resolution transmission electron microscopy (HR-TEM), field emission scanning electron microscopy (FE-SEM) and vibrating sample magnetometry (VSM) are used to characterize the samples.

View Article and Find Full Text PDF

Hexamine is known to assist anisotropic growth of metal oxides and the same is also found to be true for magnetite nanosynthesis. In this work we elucidate the role of hexamine and other precursors in the formation of magnetite nanorods by the hydrothermal route and their stoichiometry. Various others hydrolyzing agents such as sodium hydroxide (NaOH), sodium hydroxide + hexamine, ammonia (NH(3)), ammonia + formaldehyde are also studied.

View Article and Find Full Text PDF

Anisotropic growth of magnetite (Fe3O4) nanoparticles is achieved in a hydrothermal growth process using hexamine to play a dual role of oxide forming and directing agent. The samples are characterized by X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, squid magnetometry, ferromagnetic resonance technique, diffuse reflectance spectroscopy and Mössbauer spectroscopy, which collectively establish the formation of Fe3O4 phase. Anisotropic structures such as nanorods and nanotubules are revealed and these are shown to exhibit good humidity sensing properties.

View Article and Find Full Text PDF