Publications by authors named "S Joerg"

Therapeutic proteins are administered by injection or infusion. After administration, the physiologic environment in the desired body compartment - fluid or tissue - can impact protein stability and lead to changes in the safety and/or efficacy profile. For example, protein aggregation and fragmentation are critical quality attributes of the drug product and can occur after administration to patients.

View Article and Find Full Text PDF

Changes in the environment from the drug product to the human physiology might lead to physical and/or chemical modifications of the protein drug, such as in vivo aggregation and fragmentation. Although subcutaneous (SC) injection is a common route of administration for therapeutic proteins, knowledge on in vivo stability in the SC tissue is limited. In this study, we developed a physiologic in vitro model simulating the SC environment in patients.

View Article and Find Full Text PDF

The stability of therapeutic proteins can be impacted in vivo after administration, which may affect patient safety or treatment efficacy, or both. Stability testing of therapeutic proteins using models representing physiologic conditions may guide preclinical development strategy; however, to date only a few studies assessing the physical stability are available in the public domain. In this manuscript, the stability of seven fluorescently labeled monoclonal antibodies (mAbs) was evaluated in human serum and phosphate-buffered saline, two models often discussed to be representative of the situation in humans after intravenous administration.

View Article and Find Full Text PDF

Purpose: Evaluation of product viscosity, density and aeration on the dose delivery and accuracy for intravitreal injections with commonly used commercially available hypodermic 1 mL syringes.

Methods: Six commercially available hypodermic 1 mL syringes with different specifications were used for the study. Syringes were filled with the test solutions with different densities and viscosities.

View Article and Find Full Text PDF

Sterile pharmaceuticals require they be developed and manufactured using suitable container closure systems to maintain sterility until product opening. Characterizing container closure integrity (CCI) in relation to rubber stopper displacement was controversially discussed during the Annex 1 revision process. An automated inspection system can reject units with displaced rubber stoppers, and the related acceptance criteria for such in-process testing can be established by adequate studies.

View Article and Find Full Text PDF