Aims: Mesenchymal stromal cells (MSCs) are being tested and accepted as a source for cell therapy worldwide. However, the advanced age of the patients, together with the difficulties in achieving the required cell amounts, impede autologous treatments. Reprogramming of MSCs into induced pluripotent stem cells (iPSCs), followed by re-differentiation to MSCs has emerged as a promising and safe method to facilitate the cell expansion and the removal of aging-associated characteristics.
View Article and Find Full Text PDFThe development of cardiovascular implants is abundant, yet their clinical adoption remains a significant challenge in the treatment of valvular diseases. Tissue-engineered heart valves (TEHV) have emerged as a promising solution due to their remodeling capabilities, which have been extensively studied in recent years. However, ensuring reproducible production and clinical translation of TEHV requires robust longitudinal monitoring methods.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Biohybrid tissue-engineered vascular grafts (TEVGs) promise long-term durability due to their ability to adapt to hosts' needs. However, the latter calls for sensitive non-invasive imaging approaches to longitudinally monitor their functionality, integrity, and positioning. Here, we present an imaging approach comprising the labeling of non-degradable and degradable TEVGs' components for their in vitro and in vivo monitoring by hybrid H/F MRI.
View Article and Find Full Text PDFIn tissue engineering, electrospinning has gained significant interest due to its highly porous structure with an excellent surface area to volume ratio and fiber diameters that can mimic the structure of the extracellular matrix. Bioactive substances such as growth factors and drugs are easily integrated. In many applications, there is an important need for small tubular structures (I.
View Article and Find Full Text PDF