This study investigates-for the first time-the synthesis of a novel Ca-rich biochar (N-Ca-B) and its potential use for phosphorus (P) recovery from both synthetic solutions (SS) and treated urban wastewater (TUW) in a continuous stirring tank reactor (CSTR) mode. The novel biochar was synthesized by pyrolysis at 900 °C of a mixture composed of three different materials: animal biomass (poultry manure; PM), lignocellulosic waste (date palm fronds; DPFs), and abundant mineral waste (waste marble powder; WMP). Characterization of N-Ca-B showed that it has good textural properties: well-developed porosity, and high specific surface area.
View Article and Find Full Text PDFHydrogels based on natural polysaccharides have received special attention in the last decade due to their interesting features, such as availability, biocompatibility, biodegradability and safety. Such characteristics may make them sustainable and eco-friendly materials for water and wastewater treatment, meeting the concept of circular economy. In this study, a novel double-cross-linked alginate-based hydrogel has been successfully synthesized using epichlorhydrin and sodium trimetaphosphate (STMP) as cross-linker agents and then used for the removal of methylene blue (MB) dye under different operating conditions.
View Article and Find Full Text PDFPhosphorus (P) represents a major pollutant of water resources and at the same time a vital element for human and plants. P recovery from wastewaters and its reuse is a necessity in order to compensate the current important depletion of P natural reserves. The use of biochars for P recovery from wastewaters and their subsequent valorization in agriculture, instead of synthetic industrial fertilizers, promotes circular economy and sustainability concepts.
View Article and Find Full Text PDFIn this study, lead removal from aqueous solutions using biochar derived from olive mill solid and liquid wastes has been investigated by applying batch experiments and geochemical modelling. The batch adsorption experiments included the assessment of several key parameters such as the contact time (kinetic), initial concentration (isotherm), pH, adsorbent dose, and the presence of competitive cations, whilst the geochemical modelling focused on the involved adsorption mechanisms using the PHREEQC code. The kinetic studies showed that lead adsorption is a relatively fast process, where intraparticle diffusion is the rate-limiting step.
View Article and Find Full Text PDFThe experimental field of ultracold ion-atom mixtures including an alkali-metal atom and an alkaline-earth-metal ion as well as of homonuclear alkali dimers has paved the way for creating and manipulating the ultracold molecules. The present paper is focused on a study of molecules such us francium dimer and a comparative spectroscopic investigation of the cationic systems Fr-(Ca, Sr, Ba). We adopt a computational scheme without spin-orbit coupling reposed on the full configuration interaction and semi-empirical pseudo-potential theory of the atomic cores Fr, Ca, Sr, and Ba with extended and optimized basis sets.
View Article and Find Full Text PDF