Despite extensive research on developing different transition metal boride composites for aero-thermostructural applications, the understanding of the shockwave interaction using high pressure shock testing facilities and computational simulation of such interactions are much less explored. This aspect is even more important for much less explored ceramics, like NbB-based materials. While addressing this aspect, the present investigation reports the thermostructural stability of spark plasma sintered NbB-(0-40) mol % BC composites under the hypersonic aero-thermodynamic conditions using a miniature detonation-driven shock tube facility.
View Article and Find Full Text PDFA novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity.
View Article and Find Full Text PDFMany bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections.
View Article and Find Full Text PDF