Light-ion irradiations on natural platinum were performed to measure gold-radioisotope cross sections and isotope ratios, as well as to produce a carrier-free final product. Experimental cross sections are compared to TENDL-2023. There is good agreement with this work's results and other published literature values.
View Article and Find Full Text PDFPu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10(-15)-10(-5) M at pH 8. Experiments with initial Pu concentrations of 10(-15) - 10(-8) M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface.
View Article and Find Full Text PDFA high-purity carrier-free (7)Be was efficiently isolated following proton bombardment of a lithium hydroxide-aluminum target. The separation of beryllium from lithium and aluminum was achieved through a hydrochloric acid elution system utilizing cation exchange chromatography. The beryllium recovery, +99%, was assessed through gamma spectroscopy while the chemical purity was established by mass spectrometry.
View Article and Find Full Text PDFUnderstanding plutonium (Pu) sorption to, and desorption from, mineral phases is key to understanding its subsurface transport. In this work we study Pu(IV) sorption to industrial grade FEBEX bentonite over the concentration range 10(-7)-10(-16) M to determine if sorption at typical environmental concentrations (≤10(-12) M) is the same as sorption at Pu concentrations used in most laboratory experiments (10(-7)-10(-11) M). Pu(IV) sorption was broadly linear over the 10(-7)-10(-16) M concentration range during the 120 d experimental period; however, it took up to 100 d to reach sorption equilibrium.
View Article and Find Full Text PDFPlutonium (Pu) adsorption to and desorption from mineral phases plays a key role in controlling the environmental mobility of Pu. Here we assess whether the adsorption behavior of Pu at concentrations used in typical laboratory studies (≥10(-10) [Pu] ≤ 10(-6) M) are representative of adsorption behavior at concentrations measured in natural subsurface waters (generally <10(-12) M). Pu(V) sorption to Na-montmorillonite was examined over a wide range of initial Pu concentrations (10(-6)-10(-16) M).
View Article and Find Full Text PDF