Publications by authors named "S J Tirrell"

Three proteasome inhibitors have garnered regulatory approvals in various multiple myeloma settings; but drug resistance is an emerging challenge, prompting interest in blocking upstream components of the ubiquitin-proteasome pathway. One such attractive target is the E1 ubiquitin-activating enzyme (UAE); we therefore evaluated the activity of TAK-243, a novel and specific UAE inhibitor. TAK-243 potently suppressed myeloma cell line growth, induced apoptosis, and activated caspases while decreasing the abundance of ubiquitin-protein conjugates.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNA) are varied in length, under 25 nucleotides, single-stranded noncoding RNA that regulate post-transcriptional gene expression via translational repression or mRNA degradation. Elevated levels of miRNAs can be detected in systemic circulation after tissue injury, suggesting that miRNAs are released following cellular damage. Because of their remarkable stability, ease of detection in biofluids, and tissue specific expression patterns, miRNAs have the potential to be specific biomarkers of organ injury.

View Article and Find Full Text PDF

Objective. Use of tyramide signal amplification (TSA) to detect autophagy biomarkers in formalin fixed and paraffin embedded (FFPE) xenograft tissue. Materials and Methods.

View Article and Find Full Text PDF

In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models.

View Article and Find Full Text PDF