Publications by authors named "S J Tavalin"

Familial Alzheimer's disease (FAD) is frequently associated with mutations in the amyloid precursor protein (APP), which are thought to lead to cognitive deficits by impairing NMDA receptor (NMDAR)-dependent forms of synaptic plasticity. Given the reliance of synaptic plasticity on NMDAR-mediated Ca entry, shaping of NMDAR activity by APP and/or its disease-causing variants could provide a basis for understanding synaptic plasticity impairments associated with FAD. A region of APP (residues 639-644 within APP695) processed by the γ-secretase complex, which generates amyloid-β peptides, is a hotspot for FAD mutations.

View Article and Find Full Text PDF

De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR.

View Article and Find Full Text PDF

AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission in the mammalian central nervous system. Preferential AMPAR subunit assembly favors heteromeric GluA1/GluA2 complexes. The presence of the GluA2 subunit generates Ca-impermeable (CI) AMPARs that have linear current-voltage (-V) relationships.

View Article and Find Full Text PDF

Preservation of a balance between synaptic excitation and inhibition is critical for normal brain function. A number of homeostatic cellular mechanisms have been suggested to play a role in maintaining this balance, including long-term plasticity of GABAergic inhibitory synapses. Many previous studies have demonstrated a coupling of postsynaptic spiking with modification of perisomatic inhibition.

View Article and Find Full Text PDF

Some forms of long-term synaptic plasticity require docking of Ca/calmodulin-dependent protein kinase II α (CaMKIIα) to residues 1290-1309 within the intracellular C-terminal tail of the N-methyl-d-aspartate (NMDA) receptor GluN2B subunit. The phosphorylation of Ser1303 within this region destabilizes CaMKII binding. Interestingly, Ser1303 is a substrate for CaMKII itself, as well as PKC and DAPK1, but these kinases have been reported to have contradictory effects on the activity of GluN2B-containing NMDA receptors.

View Article and Find Full Text PDF