Proc Natl Acad Sci U S A
November 2024
Pdr5 is the most abundant ABC transporter in Saccharomyces cerevisiae and plays a major role in the pleiotropic drug resistance (PDR) network, which actively prevents cell entry of a large number of structurally unrelated compounds. Due to a high level of asymmetry in one of its nucleotide binding sites (NBS), Pdr5 serves as a perfect model system for asymmetric ABC transporter such as its medical relevant homologue Cdr1 from Candida albicans. In the past 30 years, this ABC transporter was intensively studied in vivo and in plasma membrane vesicles.
View Article and Find Full Text PDFTo enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell's plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous.
View Article and Find Full Text PDFBiochem J
August 2024
Toxoplasma gondii is a widely distributed apicomplexan parasite causing toxoplasmosis, a critical health issue for immunocompromised individuals and for congenitally infected foetuses. Current treatment options are limited in number and associated with severe side effects. Thus, novel anti-toxoplasma agents need to be identified and developed.
View Article and Find Full Text PDF