Publications by authors named "S J Oxenford"

Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies have found a brain network linked to improvement in Parkinson's disease (PD) after deep brain stimulation (DBS), called the PD response network.
  • The study explored how noninvasive multifocal transcranial direct current stimulation (tDCS) affects motor symptoms in PD by targeting this network.
  • Results showed that active tDCS led to a significant reduction in PD symptoms compared to sham stimulation, suggesting noninvasive stimulation can effectively improve motor function in PD patients.
View Article and Find Full Text PDF
Article Synopsis
  • * A study of 58 patients showed that different stimulation sites within STN are linked to specific improvements: cervical dystonia improved with stimulation of the ventral oral posterior nucleus, while limb dystonia and blepharospasm improved with dorsolateral STN stimulation.
  • * Each type of dystonia has distinct neural pathways and connectivity patterns, indicating that tailored stimulation targeting is essential for achieving the best treatment outcomes.
View Article and Find Full Text PDF

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders.

View Article and Find Full Text PDF

The tetrasubstituted naphthalene diimide compound QN-302 binds to G-quadruplex (G4) DNA structures. It shows high potency in pancreatic ductal adenocarcinoma (PDAC) cells and inhibits the transcription of cancer-related genes in these cells and in PDAC animal models. It is currently in Phase 1a clinical evaluation as an anticancer drug.

View Article and Find Full Text PDF