Publications by authors named "S J Mihic"

Since its discovery as a causative gene of the Immunodeficiency with Centromeric instability and Facial anomalies syndrome, ZBTB24 has emerged as a key player in DNA methylation, immunity and development. By extensively analyzing ZBTB24 genomic functions in ICF-relevant mouse and human cellular models, we document here its multiple facets as a transcription factor, with key roles in immune response-related genes expression and also in early embryonic development. Using a constitutive Zbtb24 ICF-like mutant and an auxin-inducible degron system in mouse embryonic stem cells, we showed that ZBTB24 is recruited to centromeric satellite DNA where it is required to establish and maintain the correct DNA methylation patterns through the recruitment of DNMT3B.

View Article and Find Full Text PDF

Background: N-methyl-D-aspartate (NMDA) receptors regulate synaptic plasticity and modulate a wide variety of behaviors. Mammalian NMDA receptors are inhibited by ethanol (EtOH) even at low concentrations. In mice, the F639A mutation in transmembrane domain (TMD) 3 of the NR1 subunit reduces EtOH sensitivity of the receptor and, in some paradigms, reduces behavioral EtOH sensitivity and increases EtOH consumption.

View Article and Find Full Text PDF

Ketogenesis is a metabolic process wherein ketone bodies are produced from the breakdown of fatty acids. In humans, fatty acid catabolism results in the production of acetyl-CoA which can then be used to synthesize three ketone bodies: acetoacetate, acetone, and β-hydroxybutyrate. Ketogenesis occurs at a higher rate in situations of low blood glucose, such as during fasting, heavy alcohol consumption, and in situations of low insulin, as well as in individuals who follow a 'ketogenic diet' consisting of low carbohydrate and high fat intake.

View Article and Find Full Text PDF

Alcohol is a widely used and abused substance. A major unresolved issue in the alcohol research field is determining which of the many alcohol target proteins identified to date is responsible for shaping each specific alcohol-related behavior. The large-conductance, calcium- and voltage-activated potassium channel (BK channel) is a conserved target of ethanol.

View Article and Find Full Text PDF

Benzodiazepines are positive allosteric modulators of the GABA receptor (GABAR), acting at the α-γ subunit interface to enhance GABAR function. GABA or benzodiazepine binding induces distinct conformational changes in the GABAR. The molecular rearrangements in the GABAR following benzodiazepine binding remain to be fully elucidated.

View Article and Find Full Text PDF