Publications by authors named "S J Hopp"

Introduction: Alzheimer's disease (AD) and other tauopathies are characterized by intracellular aggregates of microtubule-associated protein tau that are actively released and promote proteopathic spread. Microglia engulf pathological proteins, but how they endocytose tau is unknown.

Methods: We measured endocytosis of different tau species by microglia after pharmacological modulation of macropinocytosis or clathrin-mediated endocytosis (CME) or antagonism/genetic depletion of known tau receptors heparan-sulfate proteoglycans (HSPGs) and low-density lipoprotein receptor-related protein 1 (LRP1).

View Article and Find Full Text PDF

Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated with antigen presentation, motility and proliferation.

View Article and Find Full Text PDF

Microglia are best known as the resident phagocytes of the central nervous system (CNS). As a resident brain immune cell population, microglia play key roles during the initiation, propagation, and resolution of inflammation. The discovery of resident adaptive immune cells in the CNS has unveiled a relationship between microglia and adaptive immune cells for CNS immune-surveillance during health and disease.

View Article and Find Full Text PDF

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure.

View Article and Find Full Text PDF

Glycosylation is the most common form of post-translational modification in the brain. Aberrant glycosylation has been observed in cerebrospinal fluid and brain tissue of Alzheimer's disease (AD) cases, including dysregulation of terminal sialic acid (SA) modifications. While alterations in sialylation have been identified in AD, the localization of SA modifications on cellular or aggregate-associated glycans is largely unknown because of limited spatial resolution of commonly utilized methods.

View Article and Find Full Text PDF