Peripheral arterial disease (PAD) is associated with lower-extremity muscle wasting. Hallmark features of PAD-associated skeletal muscle pathology include loss of skeletal muscle mass, reduced strength and physical performance, increased inflammation, fibrosis, and adipocyte infiltration. At the molecular level, skeletal muscle ischemia has also been associated with gene and microRNA (miRNA) dysregulation.
View Article and Find Full Text PDFCell sheet tissue engineering requires prolonged in vitro culture for the development of implantable devices. Unfortunately, lengthy in vitro culture is associated with cell phenotype loss and substantially higher cost of goods, which collectively hinder clinical translation and commercialisation of tissue engineered medicines. Although macromolecular crowding has been shown to enhance and accelerate extracellular matrix deposition, whilst maintaining cellular phenotype, the optimal macromolecular crowding agent still remains elusive.
View Article and Find Full Text PDFBackground: Mesenchymal stem cell (MSC) derived extracellular vesicles (EVs) have been proposed as an alternative to cell therapy, creating new possible delivery modalities such as nebulisation. We wished to investigate the therapeutic potential of directly nebulised MSC-EVs in the mitigation of Escherichia coli-induced pneumonia.
Methods: EV size, surface markers and miRNA content were assessed pre- and post-nebulisation.
Background And Objectives: To simulate the cost-effectiveness of Mesenchymal Stromal Cell (MSC) therapy compared to sodium/glucose co-transporter 2 inhibitors (SGLT2i) or usual care (UC) in treating patients with Diabetic Kidney Disease (DKD).
Design, Setting, Participants, And Measurements: This Markov-chain Monte Carlo model adopted a societal perspective and simulated 10,000 patients with DKD eligible for MSC therapy alongside UC using a lifetime horizon. This cohort was compared with an SGLT2i alongside UC arm and a UC only arm.